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The N = 4 supersymmetric Yang-Mills theory offers one of the best playgrounds

to test new ideas connected to nonperturbative and exact results. Using the AdS/CFT

correspondence [1] it has allowed to get new insights and a deeper understanding of duality

properties enjoyed by the gauge theory and the corresponding supergravity. The search

for theories with a less degree of supersymmetry that nonetheless might possess features

similar to the ones of N = 4 SYM has lead to consider theories obtained deforming the

N = 4 theory itself. Of special interest are N = 4 marginal deformations analyzed in [2]

for which the supergravity dual description has been found in [3].

In this paper we consider such marginal deformations. They are called β-deformations

since they are obtained by modifying the original N = 4 superpotential for the chiral

superfields in the following way

ig Tr( Φ1Φ2Φ3 − Φ1Φ3Φ2 ) −→ ih Tr
(

eiπβ Φ1Φ2Φ3 − e−iπβ Φ1Φ3Φ2

)

(1)

where in general h and β are complex constants. In [2] it was argued that these β-

deformed N = 1 theories become conformally invariant, i.e. the deformation becomes

exactly marginal, if one condition is satisfied by the constants h and β. For the case of β

real and in the planar limit it has been shown [4] that the condition

hh̄ = g2 (2)

ensures conformal invariance of the theory to all perturbative orders and provides the exact

field theory dual to the Lunin-Maldacena supergravity background [3].

The aim of the present investigation is to study how the conformal invariance condition

can be implemented for the case of complex β. The analysis is done using a perturbative

approach and imposing the finiteness of the two-point chiral correlators. In turn this guar-

antees the vanishing of all the β-functions [5]. We find that in the planar limit conformal

invariance is achieved only for real values of the parameter β. This result seems to be

in direct correspondence with the findings of the string dual approach in which singular

solutions are produced whenever β acquires a non vanishing imaginary part [3, 6 – 8]. We

will comment on this in our conclusions.

In order to perform higher order perturbative calculations it is very efficient to rely on

N = 1 superspace techniques. In this setting the β-deformed theory is described by the

following action (we use notations and conventions as in [9], see also [10])

S =

∫

d8z Tr
(

e−gV Φ̄ie
gV Φi

)

+
1

2g2

∫

d6z Tr(W αWα)

+ih

∫

d6z Tr( q Φ1Φ2Φ3 − q−1 Φ1Φ3Φ2 )

+ih̄

∫

d6z̄ Tr( q̄−1 Φ̄1Φ̄2Φ̄3 − q̄ Φ̄1Φ̄3Φ̄2 ) , q ≡ eiπβ (3)

where h and β are complex couplings and g is the real gauge coupling constant. The

superfield strength Wα = iD̄2(e−gV DαegV ) is given in terms of a real prepotential V ,

while Φi with i = 1, 2, 3 are the three chiral superfields of the original N = 4 SYM
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Figure 1: Supergraphs contributing at one loop

theory. We write V = V aTa, Φi = Φa
i Ta where Ta are SU(N) matrices in the fundamental

representation. In the undeformed theory one has h = g and q = 1.

We want to study the condition that the couplings have to satisfy in order to guarantee

the conformal invariance of the theory for complex values of h and β in the large N limit.

As observed above to this end it is sufficient to impose the finiteness on the two-point chiral

correlator [5].

In the large N limit for real values of β, i.e. if the condition qq̄ = 1 is satisfied, the β-

deformed theory becomes exactly conformally invariant if the condition (2) is satisfied [4].

This means that if the chiral couplings differ only by a phase from the ones of the N = 4

SYM theory, the planar limits of the two theories are essentially the same (see also [11]).

When qq̄ 6= 1 the easiest way [12] to study the condition of conformal invariance is to

look at the difference between the two-point β-deformed correlator and the corresponding

one in the N = 4 SYM theory. If we want to have an exactly marginal deformation the

difference must be finite. We will proceed perturbatively in superspace. The propagators

for the vector and chiral superfields, and the interaction vertices are obtained directly from

the action in (3). Supergraphs are evaluated performing standard D-algebra in the loops

and the corresponding divergent integrals are computed using dimensional regularization

in D = 4 − 2ε.

At one loop the analysis is very simple and mimics exactly what happens in the β

real case [13, 14, 12, 4]. The divergent supergraphs are shown in figure 1. The chiral field

propagators are given by

〈ΦiΦ̄j〉 = −δij
1

¤
= δij

1

p2
(4)

while the vector propagators are

〈V V 〉 =
1

¤
= −

1

p2
(5)

The D-algebra is the same for the two configurations and its completion gives rise to a

logarithmically divergent momentum integral. The diagrams (with different color config-

urations) in figure 1b containing a vector line are the same in the N = 4 and in the

β-deformed SYM theory, since they only depend on the gauge coupling g. The diagrams

in figure 1a contain the chiral couplings: in the deformed theory they give a contribution

N

(4π)2
hh̄

(

qq̄ +
1

qq̄

)

1

ε
(6)
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Figure 2: Supergraphs contributing at two loops

while in the N = 4 theory they are proportional to g2

N

(4π)2
2g2 1

ε
(7)

In order to achieve finiteness one has to impose that the difference between the two results

be finite. This implies that to this order the β-deformed theory is conformal invariant if

hh̄

(

qq̄ +
1

qq̄

)

= 2g2 (8)

Now we consider higher-loop contributions. Since we look at the difference between

the two-point correlators computed in the β-deformed theory and in the N = 4 SYM, we

need not consider diagrams that contain only gauge-type vertices their contributions being

the same in the two theories. Therefore we concentrate on divergent graphs that contain

either only chiral vertices or mixed chiral and gauge vertices. Moreover we observe that a

chiral loop can close only if it has the same number of chiral and antichiral vertices, i.e. no

polygonal configurations with an odd number of vertices are possible. With these rules in

mind it is straightforward to analyze the two- and three-loop contributions. At two loops

we have the diagrams shown in figure 2.

For all the different configurations the D-algebra leads to the same bosonic integral in

figure 2f. It is very simple to compute the various color factors: we have for the β-deformed

theory

figure 2a −→ −2

[

hh̄

(

qq̄ +
1

qq̄

)]2

N2

figure 2b + 2c + 2d + 2e −→ 2

[

hh̄

(

qq̄ +
1

qq̄

)]

g2N2 (9)

while correspondingly for N = 4 SYM we find

figure 2a −→ −8g4N2

figure 2b + 2c + 2d + 2e −→ 4g4N2 (10)
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Figure 3: New planar structure at four loops; the vertices with dots are antichiral

If we compute the difference of the results in (9) and in (10) and use the conformal invari-

ance condition in (8), we obtain a zero result. This means that the condition we found at

one loop ensures finiteness also at two loops. In fact repeating a similar analysis at three

loops one can easily show that (8) makes the divergent diagrams computed in the deformed

theory equal to the corresponding ones in the N = 4 SYM. In the planar limit under the

condition in (8) the two-point correlators do coincide up to three loops. Up to this order

the situation is completely parallel to the case of the real β-deformation [14, 12]: there

qq̄ = 1 and the condition in (8) was simply given by hh̄ = g2. This condition was actually

sufficient [4] to implement finiteness of the two-point correlator in the planar limit to all

orders in perturbation theory . Moreover the two-point correlator of the real β-deformed

theory becomes exactly equal to the one computed in the N = 4 theory.

Now we proceed in the study of the β-complex case and examine the situation at four

loops. We will find that at this order we are forced to modify the condition in (8). This

should not come as a surprise because of the following reason: as explained above the

divergence at one loop is linked to the color factor of the chiral bubble in figure 1a and

this leads to the condition in (8). At two and three loops divergent graphs are constructed

either by inserting vector lines on chiral bubbles or by assembling chiral bubbles together.

Since the addition of vectors simply modifies the color due to the chiral vertices by the

multiplication of g2 factors, in both cases the condition in (8) suffices to give conformal

invariance. In fact this same reasoning applies also to all the four-loop diagrams that either

contain vector lines on chiral bubbles or consist of various arrangements of chiral bubbles:

for all these cases the condition in (8) makes these graphs equal to the corresponding ones

in the N = 4 theory. The novelty is that at four loops a new type of chiral divergent

structure does arise. We will be able to implement the cancelation of divergences at order

g8, but in contradistinction to the real β case finite parts will survive in the β-deformed

two-point function which are absent in the corresponding N = 4 two-point function.

The new type of chiral supergraph, i.e. not containing chiral bubble insertions, is the

one drawn in figure 3. The D-algebra structure shown explicitly in figure 4a is the same

for all the arrangements of the three chiral superfields at the vertices. Completing the D-

algebra in the loops one obtains the bosonic graph shown in figure 4b. The corresponding
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Figure 4: D-algebra for the supergraph in figure 3

integral is divergent [15]

I4 = −

∫

dDk dDq dDr dDt

(2π)4D

1

k2(k + t)2(q + k)2(q + r)2(q + p)2t2r2(t + r)2

= − 5 ζ(5)
1

(4π)8
1

ε

1

(p2)4ε
(11)

The color factor is also easily computed: one has to sum over all the various possibilities

at the chiral vertices and in so doing one finds

C4 = N4 (hh̄)4
[

(qq̄)4 +
1

(qq̄)4
+ 6

]

(12)

The factor in (12) can be rewritten as

C4 =
N4

2
(hh̄)4

[

(

qq̄ +
1

qq̄

)4

+

(

qq̄ −
1

qq̄

)4
]

(13)

In this way it is easy to compare the result with the one we would have obtained in N = 4

SYM. In fact using the condition in (8) we find that the β-deformed two-point function at

four loops differs from the corresponding N = 4 two-point function by the contribution

J4 = −
5

2
ζ(5) N4 1

(4π)8
1

ε

1

(p2)4ε
(hh̄)4

(

qq̄ −
1

qq̄

)4

(14)

If we want the β-deformed theory to be conformally invariant this term has to be can-

celled. The only way out is to modify the relation of conformal invariance in (8), so that

a contribution from a lower-loop order might cancel the unwanted four-loop divergence.

In the spirit of [2] (see also [16]), in the space of the coupling constants we are looking

for a surface of renormalization group fixed points. To this end we set

h1 ≡ hq h2 ≡
h

q
(15)

and reparametrize these couplings in terms of the gauge coupling g. In fact since in the

planar limit for each diagram the color factors from chiral vertices is always in terms of

– 5 –
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the products h2
1 ≡ h1h̄1 and h2

2 ≡ h2h̄2 we express directly h2
1 and h2

2 as power series in the

coupling g2 as follows

h2
1 = a1g

2 + a2g
4 + a3g

6 + . . .

h2
2 = b1g

2 + b2g
4 + b3g

6 + . . . (16)

The coefficients ai and bi will be determined by imposing that what we obtain from various

loop orders, subtracted by the corresponding N = 4 results, vanishes order by order in the

g2 expansion.

In order to make the comparison with the N = 4 calculation simpler we find convenient

to determine the general structure of the color factors of the relevant diagrams. At L-loop

order the color factor is a homogeneous polynomial in h2
1, h

2
2 and g2 of degree L. Moreover,

as a consequence of the invariance of the theory under the global symmetry h1 ↔ −h2

and Φi ↔ Φj, i 6= j, it has to be symmetric under h2
1 ↔ h2

2. These properties, together

with the requirement of having a smooth limit to (2g2)L in the N = 4 limit (h2
1, h

2
2 → g2),

constrain the L-loop color factor to have the following form 1

F (L)(h2
1 + h2

2) + (h2
1 − h2

2)
2 G(L−2)(h2

1, h
2
2) (17)

with F (L)(2g2) = (2g2)L. The functions F (L) and G(L−2) depend also on the coupling g2,

but for notational simplicity we have chosen not to write it explicitly. They are homoge-

neous polynomials of degrees L and (L−2) respectively, symmetric in h2
1, h

2
2. Their general

form is

F (L)(h2
1 + h2

2) =
L

∑

k=0

(h2
1 + h2

2)
k (2g2)L−k fk

G(L−2)(h2
1, h

2
2) =

[(L−2)/2]
∑

k=0

(h2
1 − h2

2)
2k P(L−2−2k)(h2

1, h
2
2) (18)

with constant coefficients fk satisfying
∑L

k=0 fk = 1 and P(L−2−2k) homogeneous polyno-

mials not vanishing for h2
1 = h2

2.

We note that for pure chiral diagrams, the ones we will be mainly interested in, there

is no g2-dependence in F (L) and G(L−2) and, in particular, F (L)(h2
1 + h2

2) = (h2
1 + h2

2)
L.

At L-loop order, after we take the difference with the N = 4 result what is left over is

given by

Γ(L) =
[

F (L)(h2
1 + h2

2) − (2g2)L + (h2
1 − h2

2)
2 G(L−2)(h2

1, h
2
2)

]

I
(L)
div (19)

where I
(L)
div denotes the divergent factor from the L-loop integral. Finally summing over all

loops and using the expansions in (16) we end up with
∑

L

Γ(L) =
∑

L

[

F (L)(h2
1 + h2

2) − (2g2)L + (h2
1 − h2

2)
2 G(L−2)(h2

1, h
2
2)

]

I
(L)
div

=
∑

k

Ak (g2)k (20)

1We do not worry about an overall normalization factor since it is irrelevant for our general argument
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Conformal invariance is achieved imposing

Ak = 0 (21)

order by order in g2.

Thus we go back to the one-loop calculation and apply concretely the general procedure

described above. From the results quoted in (6) and (7) we see that G(−1) = 0 and find

Γ(1) =
[

F (1)(h2
1 + h2

2) − (2g2)
]

I
(1)
div =

N

(4π)2
[

h2
1 + h2

2 − 2g2
] 1

ε
(22)

Therefore using the expansions in (16) at order g2 we have to impose the condition

O(g2) : A1 = 0 −→ a1 + b1 − 2 = 0 (23)

In fact since we have shown that the condition in (8) ensures conformal invariance up to

three loops, up to order g6, we find the following additional requirements

O(g4) : A2 = 0 −→ a2 + b2 = 0

O(g6) : A3 = 0 −→ a3 + b3 = 0 (24)

At this point it should be clear that, according to the procedure we have illustrated above,

we do not need consider anymore diagrams containing insertions of chiral bubbles like

the one in figure 1a: once the condition (23) is satisfied these diagrams do not lead to

new divergent contributions. Therefore at every loop order we have to isolate diagrams

corresponding to new chiral structures with eventually vector propagators inserted on them.

Now we reexamine the results we have obtained up to four loops, i.e. up to order g8.

From the four-loop calculation (see eqs. (11) and (13)) we have

−
5

2
ζ(5) N4 1

(4π)8
1

ε
(hh̄)4

{

(

qq̄ +
1

qq̄

)4

+

(

qq̄ −
1

qq̄

)4
}

= −
5

2
ζ(5) N4 1

(4π)8
1

ε

[

(h2
1 + h2

2)
4 + (h2

1 − h2
2)

4
]

(25)

Therefore we find

Γ(4) = −
5

2
ζ(5) N4 1

(4π)8
1

ε

[

(h2
1 + h2

2)
4 − (2g2)4 + (h2

1 − h2
2)

4
]

(26)

Now we insert into (20) the results we have found so far, i.e. (22) and (26) and use the

expansions in (16) with the conditions in (23) and (24). In this way we find that the

conformal invariance condition at order g8 is satisfied if

O(g8) : A4 = 0 −→ a4 + b4 −
5

2
ζ(5) N3 1

(4π)6
(a1 − b1)

4 = 0 (27)

Up to this point we have ensured that the two-point function is finite up to the order g8.

The finite contributions explicitly depend on q and vanish in the corresponding terms of

the N = 4 theory.
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Figure 5: Planar supergraphs with 1/ε2 divergences at five loops

The next step leads us to order g10: we have to consider the new five-loop diagrams and

the two-loop diagrams that will talk to the five-loop graphs once the conformal invariance

condition (27) is imposed. Following the procedure described so far, i.e. implementing the

conformal invariance condition order by order in the couplings, at the order g8 we ended

up adding contributions coming from one-loop integrals and from four-loop integrals. Now

these structures show up at order g10 as subdivergences in two-loop and five-loop integrals

respectively and they are responsible for the insurgence of 1/ε2-pole terms. In figure 2

and in figure 5 we have drawn the two- and five-loop diagrams which give rise to 1/ε2-

pole terms. Having cancelled divergences at lower orders one might be tempted to believe

that these 1/ε2 terms would automatically add up to zero. Indeed this would be the case

if we were cancelling divergences order by order in loops. As emphasized above we are

proceeding order by order in the coupling g2. At the order g8 imposing the relation (27)

we have cancelled the 1/ε pole from the one-loop diagram in figure 1c with the 1/ε pole

appearing from the graph at four loops in figure 4b. Essentially if we write schematically

the one-loop result as

A
1

ε

1

(p2)ε
(28)

and the four-loop result as

B
1

ε

1

(p2)4ε
(29)

imposing the relation in (27) we have set A+ B = 0. When we go one loop higher we have

to deal with the bosonic integrals shown in figure 6.

The 1/ε2 term in figure 6a arises from

A
1

ε

∫

dDk
1

(p + k)2(k2)1+ε
−→ A

1

ε
Γ(2ε) (30)

The 1/ε2 term in figure 6b arises from

B
1

ε

∫

dDk
1

(p + k)2(k2)1+4ε
−→ B

1

ε
Γ(5ε) (31)
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Figure 6: Subtraction of subdivergences at order g10

It is clear that setting A + B = 0 is not enough to cancel the 1/ε2 poles.

In order to check this general argument we have computed the 1/ε2 divergent terms

explicitly. At order g10 from the two-loop graphs shown in figure 2, denoting with I2 the

divergent integral in figure 6a we have

−6(a4 + b4)N
2I2 −→ −15 ζ(5) N5 1

(4π)6
(a1 − b1)

4 1

(4π)4
1

2ε2
(32)

where we have used the relation in (27). In the same way from the five-loop graphs shown

in figure 5, denoting with I5 the divergent integral in figure 6b, we obtain

3(a1 − b1)
4N5I5 −→ 3(a1 − b1)

4 N5 1

(4π)10
ζ(5)

ε2
(33)

Clearly the terms in (32) and (33) do not add up to zero and in fact they reproduce

the mismatch anticipated in (30) and (31) when A + B = 0. Therefore at order g10 the

cancellation of the 1/ε2 poles requires that (see also (23) and (27))

a1 = b1 = 1 a4 + b4 = 0 (34)

These conditions can be equivalently found by requiring a vanishing gauge β-function at

order g11 [17].

Once the conditions in (34) have been imposed, at the order g10 all the 1/ε divergences

from diagrams at five and two loops are automatically cancelled. Thus at this order the

only divergence comes from the one-loop bubble and we are forced to impose

a5 + b5 = 0 (35)

Before proceeding to the next order g12, let us note that this pattern of cancelling

divergences between the one-loop bubble in figure 1a and the four-loop diagram in figure 4

will repeat itself at order g16, while the cancelation of the 1/ε2 poles will show up at the

order g18 and will involve again the diagrams at two and five loops that we have just

considered. Indeed at this stage from the divergent contribution of the four-loop diagrams,

– 9 –
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Figure 7: New planar chiral diagrams at six loops

using the conditions imposed so far on the coefficients of the expansions in (16), the first

divergence will be proportional to

[(a2 − b2) g4]4 = (2a2)
4 g16 (36)

So for the time being, having ensured conformal invariance of the theory up to the order

g10, we proceed and examine the situation at six loops. The new divergent chiral diagrams

are shown in figure 7: they are all logarithmically divergent.

Their color factor is easily evaluated: it can be written in the following form

(h2
1 + h2

2)
6 + (h2

1 − h2
2)

4 (
5

3
h4

1 +
2

3
h2

1h
2
2 +

5

3
h4

2) (37)

Thus we find that in the g2 expansion the first nonvanishing term from the six-loop diver-

gence will be proportional to

[(a2 − b2) g4]4 g4 = (2a2)
4 g20 (38)

Thus once again to the order g12 the only divergence arises from the one-loop bubble and

its cancelation requires

a6 + b6 = 0 (39)

We keep on going and look for divergent terms at the order g14. The diagrams at seven

loops have a color factor proportional to

(h2
1 + h2

2)
7 + (h2

1 − h2
2)

4 (3h6
1 + 5h4

1h
2
2 + 5h2

1h
4
2 + 3h6

2) (40)

which, using the expansion in (16), gives as first relevant term

[(a2 − b2) g4]4 g6 = (2a2)
4 g22 (41)

Therefore once again the only divergence at the order g14 comes from one loop and leads

to the condition

a7 + b7 = 0 (42)

In accordance with the general discussion around equations (17), (18) and what we

have found by the explicit calculations we have reported up to seven loops, we write the

L-loop color structure of the pure chiral divergent diagrams in the following form

(h2
1 + h2

2)
L + (h2

1 − h2
2)

4 [α(h2
1)

L−4 + β(h2
1)

L−5h2
2 + . . . + γ(h2

2)
L−4] (43)
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We note that the only arbitrary assumption with respect to the general form that one can

infer from (17), (18) is the absence of a term proportional to (h2
1 −h2

2)
2. Even if we do not

have a general argument for the absence of such a term we are very well supported by the

results up to seven loops illustrated so far.

If we take into account the conditions found so far for the coefficients in (16), then (43)

immediately implies that the various diagrams at L loops will give contributions in the g2

expansion whose first relevant term is proportional to

[(a2 − b2) g4]4 g2L−8 = (2a2)
4 g2L+8 (44)

The conclusion is that diagrams at six loops or higher will start contributing at the earliest

when we reach order g20, as we have explicitly seen in (38) and (41). Therefore if we now

turn to the order g16, as previously anticipated, the only divergent contributions come from

the one-loop bubble proportional to a8 + b8 and from the four-loop diagram proportional

to a4
2 (see eq. (36)). In order for the divergences to cancel at this order we have to require

O(g16) : A8 = 0 −→ a8 + b8 −
5

2
ζ(5) N3 1

(4π)6
(a2 − b2)

4 = 0 (45)

Going up to the order g18 we have to cancel the 1/ε2 poles from the two and five-loop

diagrams: following the same steps as before we are forced to impose

a8 + b8 = 0 a2 = b2 = 0 (46)

With these conditions on the coefficients in the expansion (16), at order g18 the 1/ε poles

come only from the one-loop bubble and they cancel out once

a9 + b9 = 0 (47)

Since in (46) we have imposed a2 = 0, automatically we find that the various divergences

from six, seven, . . . , L-loop diagrams are pushed up

6 loops −→ [(a3 − b3) g6]4 g4 = (2a3)
4 g28

7 loops −→ [(a3 − b3) g6]4 g6 = (2a3)
4 g30

. . . . . . . . .

L loops −→ [(a3 − b3) g6]4 g2L−8 = (2a3)
4 g2L+16 (48)

It becomes clear that everything is ruled by the cancelation of divergences at one and

four loop and by the subsequent cancelation of the 1/ε2 poles at two and five loops. This

happens at the order (g2)4k and at the order (g2)4k+1 respectively. The new chiral graphs

at six loops and higher never enter the game due to the specific form of their color structure

as in (43). The mechanism works as follows: up to the order (g2)4k−1 we find that the

coefficients have to satisfy

a1 = b1 = 1 aj−1 = 0 a4j−1 + b4j−1 = 0 j = 2, . . . , k (49)

– 11 –
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At O((g2)4k) in order to cancel the divergent contributions from one and four loops we

have to impose

a4k + b4k −
5

2
ζ(5) N3 1

(4π)6
(ak − bk)

4 = 0 (50)

Then at O((g2)4k+1) the divergences from two and five loops need to be cancelled and we

are forced to require

a4k + b4k = 0 ak = bk = 0 (51)

Finally this leads to

a1 = b1 = 1 an = bn = 0 n = 2, 3, . . . (52)

These conclusions have been drawn based on the general expression given in (43) for the

color structure of pure chiral diagrams where we have assumed the absence of a term

quadratic in (h2
1 − h2

2). Now which control do we have on this assumption in the higher-

loop divergent chiral diagrams? We have computed explicitly all the color structures up to

ten loops; with the help of Mathematica we have evaluated the color factors of arbitrarily

chosen higher-loop graphs; in addition we have explicit formulas for several classes of chiral

diagrams. We have found consistently that all of them can be cast in the form given in (43).

The conditions (52) on the coefficients tell us that the β-deformed SYM theory is

conformally invariant only for β real.

In the AdS/CFT dual description supergravity solutions associated to a complex pa-

rameter can be generated by completing the usual TsT transformation which leads to the

Lunin-Maldacena background with S-duality transformations [3]. However, as discussed

in [6], S-duality transformations might affect the 2d conformal invariance of the string

sigma-model and this would require the appearance of α′/R2 corrections to the classical

superstring action and then to the Lunin-Maldacena background. The fact that a complex

deformation parameter might be problematic is also signaled by the appearance of singu-

larities in the deformed metric when an imaginary part of β is turned on [7]. Therefore, the

result we have obtained on the field theory side seems to be in agreement with AdS/CFT

expectations.

Our result is also consistent with the integrability properties of the deformed theo-

ries. In fact, the requirement that the one-loop dilatation operator of a generic deformed

theory (3) be the hamiltonian of an integrable spin chain constrains |q| = 1 [18].

We stress that our investigation has been carried on perturbatively, ignoring completly

possible nonperturbative effects. In particular, we have assumed the gauge coupling con-

stant to be real in order to avoid the presence of nontrivial instantonic effects [19]. It would

be interesting to extend our analysis to g complex and to understand if the embedding of

all the couplings in a complex manifold leads to nontrivial superconformal conditions.
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